skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Naeem, Nazish"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the design, implementation, and evaluation of SeaScan, an energy-efficient camera for 3D imaging of underwater environments. At the core of SeaScan’s design is a trinocular lensing system, which employs three ultra-lowpower monochromatic image sensors to reconstruct color images. Each of the sensors is equipped with a different filter (red, green, and blue) for color capture. The design introduces multiple innovations to enable reconstructing 3D color images from the captured monochromatic ones. This includes an ML-based cross-color alignment architecture to combine the monochromatic images. It also includes a cross-refractive compensation technique that overcomes the distortion of the wide-angle imaging of the low-power CMOS sensors in underwater environments.We built an end-to-end prototype of SeaScan, including color filter integration, 3D reconstruction, compression, and underwater backscatter communication. Our evaluation in real-world underwater environments demonstrates that SeaScan can capture underwater color images with as little as 23.6 mJ, which represents 37× reduction in energy consumption in comparison to the lowest-energy state-of-the-art underwater imaging system.We also report qualitative and quantitative evaluation of SeaScan’s color reconstruction and demonstrate its success in comparison to multiple potential alternative techniques (both geometric and ML-based) in the literature. SeaScan’s ability to image underwater environments at such low energy opens up important applications in long-term monitoring for ocean climate change, seafood production, and scientific discovery. 
    more » « less
    Free, publicly-accessible full text available December 4, 2025
  2. The majority of existing RFID readers rely on circularly polarized or switched polarization antennas for powering and communicating with tags.In this paper, we argue that a new form of software-controlled polarization brings important benefits to the tasks of powering, communicating with, and localizing RFID tags. Using only two linearly polarized antennas, we demonstrate how one could generate an arbitrarily linear polarization in the same plane relying entirely on software control. We incorporate this approach into a protocol that automatically discovers RFID orientations in the environment and show how this approach increases the range(or alternatively reduces the transmit power) of RFID readers. We also demonstrate this approach in an end-to-end RFID localization application. 
    more » « less
  3. Mechanical search is a robotic problem where a robot needs to retrieve a target item that is partially or fully occluded from its camera. State-of-the-art approaches for mechanical search either require an expensive search process to find the target item, or they require the item to be tagged with a radio frequency identification tag (e.g., RFID), making their approach beneficial only to tagged items in the environment. We present FuseBot, the first robotic system for RF-Visual mechanical search that enables efficient retrieval of both RFtagged and untagged items in a pile. Rather than requiring all target items in a pile to be RF-tagged, FuseBot leverages the mere existence of an RF-tagged item in the pile to benefit both tagged and untagged items. Our design introduces two key innovations. The first is RF-Visual Mapping, a technique that identifies and locates RF-tagged items in a pile and uses this information to construct an RF-Visual occupancy distribution map. The second is RF-Visual Extraction, a policy formulated as an optimization problem that minimizes the number of actions required to extract the target object by accounting for the probabilistic occupancy distribution, the expected grasp quality, and the expected information gain from future actions. We built a real-time end-to-end prototype of our system on a UR5e robotic arm with in-hand vision and RF perception modules. We conducted over 180 real-world experimental trials to evaluate FuseBot and compare its performance to a of-the-art vision-based system named X-Ray. Our experimental results demonstrate that FuseBot outperforms X-Ray’s efficiency by more than 40% in terms of the number of actions required for successful mechanical search. Furthermore, in comparison to X-Ray’s success rate of 84%, FuseBot achieves a success rate of 95% in retrieving untagged items, demonstrating for the first time that the benefits of RF perception extend beyond tagged objects in the mechanical search problem. 
    more » « less